Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### Bis{1,2-bis[2-(1*H*-imidazol-1-yl)ethoxy]ethane- $\kappa^2 N^3$ , $N^{3'}$ }dichloridocadmium(II) monohydrate

#### **Guang-Xiang Liu**

Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246003, People's Republic of China

Correspondence e-mail: liugx@live.com

Received 13 May 2010; accepted 21 May 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.030; wR factor = 0.087; data-to-parameter ratio = 15.3.

The asymmetric unit of the title compound,  $[CdCl_2(C_{12}H_{18}-N_4O_2)_2]\cdot H_2O$ , contains one water molecule and two halves of a  $[CdCl_2(BIEE)_2]$  complex molecule {BIEE is 1,2-bis[2-(1*H*-imidazol-1-yl)ethoxy]ethane}, with the Cd<sup>II</sup> atoms lying on inversion centres. Each metal atom displays an elongated octahedral coordination geometry provided by two *trans*-arranged chloride anions and four N atoms from two BIEE ligands. Weak  $O-H\cdots Cl$  hydrogen-bond interactions contribute to the stability of the crystal packing.

#### **Related literature**

For general background to flexible bis(imidazole) ligands, see: Liu *et al.* (2007); Wen *et al.* (2007); Jin *et al.* (2006). For a related structure, see: Liu *et al.* (2010).



#### **Experimental**

Crystal data [CdCl<sub>2</sub>(C<sub>12</sub>H<sub>18</sub>N<sub>4</sub>O<sub>2</sub>)<sub>2</sub>]·H<sub>2</sub>O

 $M_r=701.92$ 

| Monoclinic, $P2_1/c$            | Z = 4                          |
|---------------------------------|--------------------------------|
| a = 15.3629 (13)  Å             | Mo $K\alpha$ radiation         |
| b = 11.0659 (9)  Å              | $\mu = 0.94 \text{ mm}^{-1}$   |
| c = 18.4492 (16)  Å             | $T = 293  { m K}$              |
| $\beta = 102.558 \ (1)^{\circ}$ | $0.26 \times 0.22 \times 0.22$ |
| V = 3061.4 (4) Å <sup>3</sup>   |                                |
|                                 |                                |
| Data collection                 |                                |

#### Data collectio

| Bruker SMART APEX CCD area-            | 21862 measured reflections             |
|----------------------------------------|----------------------------------------|
| detector diffractometer                | 5691 independent reflections           |
| Absorption correction: multi-scan      | 4148 reflections with $I > 2\sigma(I)$ |
| (SADABS; Bruker, 2000)                 | $R_{\rm int} = 0.022$                  |
| $T_{\min} = 0.793, \ T_{\max} = 0.835$ |                                        |
|                                        |                                        |

 $\times 0.20 \text{ mm}$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.030$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $vR(F^2) = 0.087$               | independent and constrained                                |
| S = 1.04                        | refinement                                                 |
| 691 reflections                 | $\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 372 parameters                  | $\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$ |
| 3 restraints                    |                                                            |

| Table 1       |          |     |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (Å, | °). |

| $D - H \cdots A$          | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|---------------------------|----------|-------------------------|--------------|---------------------------|
| $D1W-H1WB\cdots Cl2^{i}$  | 0.85 (2) | 2.33 (3)                | 3.165 (3)    | 164 (5)                   |
| $D1W-H1WA\cdots Cl1^{ii}$ | 0.88 (6) | 2.42 (5)                | 3.198 (4)    | 147 (7)                   |

Symmetry codes: (i) x + 1, y, z; (ii)  $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$ .

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (No. 20971004), the Key Project of the Chinese Ministry of Education (No. 210102) and the Natural Science Foundation of the Educational Commission of Anhui Province of China (No. KJ2010A229).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2451).

#### References

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Jin, C. M., Lu, H., Wu, L. Y. & Huang, J. (2006). Chem. Commun. pp. 5039– 5041.

Liu, G. X., Chen, H. & Ren, X. M. (2010). Chin. J. Inorg. Chem. 743, 161–165.
Liu, Y. Y., Ma, J. F., Yang, J. & Su, Z. M. (2007). Cryst. Growth Des. 7, 3027– 3037.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wen, L. L., Lu, Z. D., Lin, J. G., Tian, Z. F., Zhu, H. Z. & Meng, Q. J. (2007). Cryst. Growth Des. 7, 93–99.

Acta Cryst. (2010). E66, m714 [doi:10.1107/S1600536810019148]

### $Bis\{1,2-bis[2-(1H-imidazol-1-yl)ethoxy]ethane-\kappa^2 N^3, N^{3'}\} dichloridocadmium (II) monohydrate$

#### G.-X. Liu

#### Comment

A large number of beautiful metal organic frameworks (MOFs) of ingenious design based on flexible bis(imidazole) ligands, such as  $(N-im)_2(CH_2)_n$  (n = 1-4), have recently been constructed (Liu *et al.*, 2007; Wen *et al.*, 2007; Jin *et al.*, 2006). These ligands bearing alkyl spacers are good choices of N-donor ligands, because the flexible nature of the spacers allows the ligands to bend and rotate when it coordinates to metal centers. The structures and properties also can be modified by changing the spacer groups, for an instance, by varying the length of the spacer. We designed and prepared a long ligand, 1,2-bis(2-(1*H*-imidazol-1-yl)ethoxy)ethane (BIEE), which is longer than 1,1'-(2,2'-oxybis(ethane-2,1-diyl))bis(1*H*-imidazole)) (obbm). The increasing length may control the physical dimensions of the crystalline architecture and, accordingly, affects the internal chemistry of the coordination polymers. Therefore, the exploration of this ligand is necessary in order to enrich and develop this field.

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit contains one water molecule and two crystallographically independent half of a  $[CdCl_2(BIEE)_2]$  complex molecule, with the metal atoms lying on inversion centres. Each cadmium(II) atom displays an elongated octahedral coordination geometry, with four N atoms from two BIEE ligands providing the equatorial plane and two Cl anions at the axial positions. The Cd—N lengths range from 2.328 (2) to 2.365 (2) Å; these values agree well with those observed in  $[Cd(NCS)_2(1-vinylimidazole)_4]$  (Liu *et al.*, 2010). The values of the bond angles around the cadmium atoms are close to those expected for a regular octahedral geometry, the largest deviation being observed for the N8—Cd1—N5 angle  $[91.68 (8)^\circ]$ . Weak O—H…Cl interactions (Table 1) contribute to the stability of the crystal packing (Fig. 2).

#### **Experimental**

An aqueous solution (15 ml) of CdCl<sub>2</sub>.2.5H<sub>2</sub>O (0.23 g, 1.0 mmol) was added slowly with constant stirring to a solution of 1,1'-(2,2'-oxybis(ethane-2,1-diyl))bis(1H-imidazole)) (0.21 g, 0.1 mmol) in water (20 ml). The reaction mixture was then heated to reflux for 3 h. The resulting mixture was left to stand at room temperature for three weeks. Colourless block crystals suitable for X-ray analysis were obtained on slow evaporation of the solvent. Yield: 67% (based on Cd).

#### Refinement

The water H atoms were located in a difference Fourier map and refined with the O—H bond distances restrained to 0.86 Å. All other H atoms were positioned geometrically, with C—H = 0.93–0.97 Å, and constrained to ride on their parent atoms, with  $U_{iso}(H) = 1.2 U_{eq}(C)$ .

**Figures** 



Fig. 1. The asymmetric unit of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.



Fig. 2. Packing diagram of the title compound viewed along the b axis. Hydrogen bonds are shown as dashed lines.

### Bis{1,2-bis[2-(1*H*-imidazol-1-yl)ethoxy]ethane- $\kappa^2 N^3$ , $N^{3'}$ }dichloridocadmium(II) monohydrate

| Crystal data                                |                                                       |
|---------------------------------------------|-------------------------------------------------------|
| $[CdCl_2(C_{12}H_{18}N_4O_2)_2] \cdot H_2O$ | F(000) = 1440                                         |
| $M_r = 701.92$                              | $D_{\rm x} = 1.523 {\rm ~Mg~m}^{-3}$                  |
| Monoclinic, $P2_1/c$                        | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc                        | Cell parameters from 9598 reflections                 |
| a = 15.3629 (13)  Å                         | $\theta = 2.2 - 27.2^{\circ}$                         |
| <i>b</i> = 11.0659 (9) Å                    | $\mu = 0.94 \text{ mm}^{-1}$                          |
| c = 18.4492 (16)  Å                         | T = 293  K                                            |
| $\beta = 102.558 \ (1)^{\circ}$             | Block, colorless                                      |
| $V = 3061.4 (4) \text{ Å}^3$                | $0.26 \times 0.22 \times 0.20 \text{ mm}$             |
| Z = 4                                       |                                                       |

#### Data collection

| Bruker SMART APEX CCD area-detector diffractometer                   | 5691 independent reflections                                              |
|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: sealed tube                                        | 4148 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                             | $R_{\rm int} = 0.022$                                                     |
| phi and $\omega$ scans                                               | $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$ |
| Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2000) | $h = -18 \rightarrow 18$                                                  |
| $T_{\min} = 0.793, T_{\max} = 0.835$                                 | $k = -13 \rightarrow 13$                                                  |
| 21862 measured reflections                                           | <i>l</i> = −22→22                                                         |

#### Refinement

| Refinement on $F^2$        | Primary atom site location: structure-invariant direct methods |
|----------------------------|----------------------------------------------------------------|
| Least-squares matrix: full | Secondary atom site location: difference Fourier map           |

| $R[F^2 > 2\sigma(F^2)] = 0.030$ | Hydrogen site location: inferred from neighbouring sites                            |
|---------------------------------|-------------------------------------------------------------------------------------|
| $wR(F^2) = 0.087$               | H atoms treated by a mixture of independent and constrained refinement              |
| <i>S</i> = 1.04                 | $w = 1/[\sigma^2(F_o^2) + (0.0331P)^2 + 3.6911P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| 5691 reflections                | $(\Delta/\sigma)_{max} < 0.001$                                                     |
| 372 parameters                  | $\Delta \rho_{max} = 0.53 \text{ e} \text{ Å}^{-3}$                                 |
| 8 restraints                    | $\Delta \rho_{min} = -0.38 \text{ e } \text{\AA}^{-3}$                              |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | У            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|--------------|--------------|---------------------------|
| Cd1 | 0.5000       | 0.0000       | 0.5000       | 0.03408 (9)               |
| Cd2 | 0.0000       | 0.5000       | 0.5000       | 0.03731 (10)              |
| Cl1 | 0.35374 (6)  | 0.07994 (8)  | 0.40345 (5)  | 0.0623 (3)                |
| C12 | -0.14291 (6) | 0.51856 (10) | 0.38908 (5)  | 0.0654 (3)                |
| N1  | 0.06622 (17) | 0.6671 (2)   | 0.45294 (15) | 0.0453 (6)                |
| N2  | 0.1595 (2)   | 0.7621 (3)   | 0.39710 (16) | 0.0555 (7)                |
| N3  | 0.0872 (3)   | 0.2692 (3)   | 0.3298 (2)   | 0.0799 (11)               |
| N4  | 0.06263 (18) | 0.3669 (3)   | 0.42699 (17) | 0.0508 (7)                |
| N5  | 0.58186 (17) | 0.1608 (2)   | 0.46622 (14) | 0.0398 (6)                |
| N6  | 0.61728 (16) | 0.3470 (2)   | 0.44305 (13) | 0.0373 (6)                |
| N7  | 0.48013 (18) | 0.2327 (2)   | 0.69235 (13) | 0.0394 (6)                |
| N8  | 0.46279 (17) | 0.1245 (2)   | 0.59039 (13) | 0.0386 (6)                |
| 01  | 0.1550 (2)   | 0.6593 (3)   | 0.25676 (15) | 0.0883 (10)               |
| O2  | 0.1213 (4)   | 0.4214 (4)   | 0.2164 (2)   | 0.148 (2)                 |
| O3  | 0.60598 (15) | 0.42888 (19) | 0.70446 (12) | 0.0457 (5)                |
| O4  | 0.62769 (15) | 0.51267 (18) | 0.56526 (12) | 0.0456 (5)                |
| O1W | 0.6777 (2)   | 0.5003 (4)   | 0.26691 (19) | 0.0850 (10)               |
| C1  | 0.6641 (2)   | 0.1620 (3)   | 0.44932 (19) | 0.0488 (8)                |
| H1  | 0.6993       | 0.0940       | 0.4476       | 0.059*                    |
| C2  | 0.6870 (2)   | 0.2762 (3)   | 0.43540 (18) | 0.0460 (8)                |
| H2  | 0.7398       | 0.3012       | 0.4231       | 0.055*                    |
| C3  | 0.5561 (2)   | 0.2744 (3)   | 0.46206 (16) | 0.0392 (7)                |
| H3  | 0.5021       | 0.3010       | 0.4712       | 0.047*                    |
|     |              |              |              |                           |

| C4   | 0.6131 (2) | 0.4790 (3) | 0.43723 (17) | 0.0444 (8)  |
|------|------------|------------|--------------|-------------|
| H4A  | 0.5515     | 0.5049     | 0.4304       | 0.053*      |
| H4B  | 0.6348     | 0.5043     | 0.3940       | 0.053*      |
| C5   | 0.6676 (2) | 0.5382 (3) | 0.50518 (17) | 0.0436 (7)  |
| H5A  | 0.7281     | 0.5073     | 0.5152       | 0.052*      |
| H5B  | 0.6697     | 0.6248     | 0.4977       | 0.052*      |
| C6   | 0.6773 (2) | 0.5605 (3) | 0.63323 (17) | 0.0454 (8)  |
| H6A  | 0.6921     | 0.6444     | 0.6267       | 0.055*      |
| H6B  | 0.7324     | 0.5156     | 0.6491       | 0.055*      |
| C7   | 0.6227 (2) | 0.5509 (3) | 0.68994 (18) | 0.0472 (8)  |
| H7A  | 0.6538     | 0.5895     | 0.7354       | 0.057*      |
| H7B  | 0.5666     | 0.5927     | 0.6726       | 0.057*      |
| C8   | 0.5455 (2) | 0.4203 (3) | 0.75265 (17) | 0.0462 (8)  |
| H8A  | 0.4913     | 0.4643     | 0.7318       | 0.055*      |
| H8B  | 0.5720     | 0.4555     | 0.8005       | 0.055*      |
| C9   | 0.5243 (2) | 0.2903 (3) | 0.76207 (16) | 0.0499 (8)  |
| H9A  | 0.5791     | 0.2472     | 0.7826       | 0.060*      |
| H9B  | 0.4860     | 0.2841     | 0.7974       | 0.060*      |
| C10  | 0.5194 (2) | 0.1621 (3) | 0.65024 (16) | 0.0408 (7)  |
| H10  | 0.5796     | 0.1418     | 0.6618       | 0.049*      |
| C11  | 0.3925 (2) | 0.2424 (3) | 0.65710 (17) | 0.0442 (8)  |
| H11  | 0.3485     | 0.2863     | 0.6729       | 0.053*      |
| C12  | 0.3827 (2) | 0.1752 (3) | 0.59443 (17) | 0.0416 (7)  |
| H12  | 0.3296     | 0.1651     | 0.5595       | 0.050*      |
| C13  | 0.0398 (3) | 0.3551 (4) | 0.3545 (2)   | 0.0640 (10) |
| H13  | -0.0041    | 0.4010     | 0.3240       | 0.077*      |
| C14  | 0.1286 (2) | 0.2831 (3) | 0.4502 (3)   | 0.0665 (11) |
| H14  | 0.1580     | 0.2696     | 0.4991       | 0.080*      |
| C15  | 0.1439 (3) | 0.2235 (4) | 0.3904 (4)   | 0.0868 (16) |
| H15  | 0.1856     | 0.1624     | 0.3906       | 0.104*      |
| C16  | 0.0786 (4) | 0.2352 (6) | 0.2505 (3)   | 0.131 (3)   |
| H16A | 0.1019     | 0.1540     | 0.2490       | 0.157*      |
| H16B | 0.0156     | 0.2324     | 0.2273       | 0.157*      |
| C17  | 0.1193 (6) | 0.3070 (6) | 0.2090 (3)   | 0.139 (3)   |
| H17A | 0.1807     | 0.2800     | 0.2169       | 0.167*      |
| H17B | 0.0920     | 0.2903     | 0.1575       | 0.167*      |
| C18  | 0.1213 (7) | 0.5041 (6) | 0.1698 (3)   | 0.153 (3)   |
| H18A | 0.0604     | 0.5098     | 0.1416       | 0.184*      |
| H18B | 0.1561     | 0.4735     | 0.1358       | 0.184*      |
| C19  | 0.1489 (4) | 0.6200 (5) | 0.1849 (3)   | 0.0984 (16) |
| H19A | 0.1081     | 0.6730     | 0.1520       | 0.118*      |
| H19B | 0.2071     | 0.6290     | 0.1730       | 0.118*      |
| C20  | 0.1985 (3) | 0.7675 (4) | 0.2759 (2)   | 0.0749 (12) |
| H20A | 0.1580     | 0.8338     | 0.2585       | 0.090*      |
| H20B | 0.2485     | 0.7738     | 0.2518       | 0.090*      |
| C21  | 0.2309 (3) | 0.7774 (4) | 0.3559 (2)   | 0.0711 (11) |
| H21A | 0.2583     | 0.8561     | 0.3675       | 0.085*      |
| H21B | 0.2763     | 0.7166     | 0.3723       | 0.085*      |
| C22  | 0.1212 (3) | 0.8467 (3) | 0.4339 (2)   | 0.0635 (10) |
|      |            |            |              |             |

| H22  | 0.1321      | 0.9295     | 0.4352       | 0.076*     |
|------|-------------|------------|--------------|------------|
| C23  | 0.1232 (2)  | 0.6563 (3) | 0.40966 (19) | 0.0506 (8) |
| H23  | 0.1369      | 0.5832     | 0.3899       | 0.061*     |
| C24  | 0.0646 (2)  | 0.7880 (3) | 0.4682 (2)   | 0.0588 (9) |
| H24  | 0.0299      | 0.8241     | 0.4976       | 0.071*     |
| H1WA | 0.678 (5)   | 0.550 (6)  | 0.230 (3)    | 0.19 (3)*  |
| H1WB | 0.7311 (18) | 0.505 (5)  | 0.292 (3)    | 0.12 (2)*  |
|      |             |            |              |            |

## Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$     | $U^{23}$      |
|-----|--------------|--------------|--------------|---------------|--------------|---------------|
| Cd1 | 0.04100 (18) | 0.02596 (15) | 0.03493 (17) | -0.00286 (12) | 0.00747 (13) | -0.00432 (12) |
| Cd2 | 0.03589 (17) | 0.04115 (18) | 0.03550 (17) | -0.00300 (13) | 0.00907 (13) | 0.00258 (13)  |
| Cl1 | 0.0565 (5)   | 0.0578 (5)   | 0.0629 (5)   | 0.0116 (4)    | -0.0079 (4)  | -0.0091 (4)   |
| Cl2 | 0.0485 (5)   | 0.0866 (7)   | 0.0535 (5)   | -0.0051 (5)   | -0.0056 (4)  | 0.0107 (5)    |
| N1  | 0.0415 (15)  | 0.0459 (15)  | 0.0483 (15)  | -0.0039 (12)  | 0.0091 (12)  | 0.0062 (13)   |
| N2  | 0.0594 (19)  | 0.0520 (17)  | 0.0558 (18)  | -0.0209 (15)  | 0.0145 (15)  | 0.0010 (14)   |
| N3  | 0.091 (3)    | 0.061 (2)    | 0.107 (3)    | -0.018 (2)    | 0.062 (2)    | -0.030 (2)    |
| N4  | 0.0454 (16)  | 0.0502 (16)  | 0.0607 (18)  | -0.0017 (13)  | 0.0199 (14)  | -0.0053 (14)  |
| N5  | 0.0420 (14)  | 0.0334 (13)  | 0.0442 (14)  | -0.0046 (11)  | 0.0096 (12)  | -0.0012 (11)  |
| N6  | 0.0453 (15)  | 0.0339 (13)  | 0.0328 (13)  | -0.0049 (11)  | 0.0086 (11)  | 0.0011 (10)   |
| N7  | 0.0552 (17)  | 0.0327 (13)  | 0.0325 (13)  | -0.0055 (12)  | 0.0142 (12)  | -0.0016 (10)  |
| N8  | 0.0483 (15)  | 0.0322 (13)  | 0.0361 (13)  | -0.0023 (11)  | 0.0112 (12)  | -0.0025 (11)  |
| 01  | 0.111 (2)    | 0.103 (2)    | 0.0575 (17)  | -0.053 (2)    | 0.0321 (16)  | -0.0108 (16)  |
| O2  | 0.293 (6)    | 0.086 (3)    | 0.085 (3)    | -0.037 (3)    | 0.083 (3)    | -0.021 (2)    |
| O3  | 0.0581 (14)  | 0.0379 (12)  | 0.0451 (12)  | -0.0010 (10)  | 0.0197 (11)  | -0.0046 (10)  |
| O4  | 0.0514 (13)  | 0.0461 (13)  | 0.0399 (12)  | -0.0151 (10)  | 0.0112 (10)  | -0.0070 (10)  |
| O1W | 0.0576 (19)  | 0.133 (3)    | 0.0605 (19)  | 0.0083 (19)   | 0.0039 (16)  | -0.016 (2)    |
| C1  | 0.0482 (19)  | 0.0413 (18)  | 0.058 (2)    | 0.0046 (15)   | 0.0131 (16)  | -0.0043 (16)  |
| C2  | 0.0413 (18)  | 0.0467 (18)  | 0.053 (2)    | -0.0050 (15)  | 0.0175 (15)  | -0.0033 (15)  |
| C3  | 0.0403 (17)  | 0.0369 (16)  | 0.0419 (17)  | -0.0026 (13)  | 0.0121 (14)  | 0.0008 (13)   |
| C4  | 0.059 (2)    | 0.0336 (16)  | 0.0378 (17)  | -0.0056 (14)  | 0.0052 (15)  | 0.0076 (13)   |
| C5  | 0.054 (2)    | 0.0332 (15)  | 0.0440 (18)  | -0.0085 (14)  | 0.0118 (15)  | 0.0051 (14)   |
| C6  | 0.0509 (19)  | 0.0383 (17)  | 0.0449 (18)  | -0.0109 (15)  | 0.0057 (15)  | -0.0062 (14)  |
| C7  | 0.054 (2)    | 0.0383 (17)  | 0.0477 (19)  | -0.0041 (15)  | 0.0081 (16)  | -0.0113 (15)  |
| C8  | 0.061 (2)    | 0.0445 (18)  | 0.0348 (16)  | -0.0075 (16)  | 0.0136 (15)  | -0.0097 (14)  |
| C9  | 0.073 (2)    | 0.0488 (19)  | 0.0286 (16)  | -0.0135 (17)  | 0.0135 (15)  | -0.0028 (14)  |
| C10 | 0.0435 (17)  | 0.0406 (17)  | 0.0397 (17)  | -0.0043 (14)  | 0.0117 (14)  | -0.0021 (14)  |
| C11 | 0.060(2)     | 0.0324 (16)  | 0.0443 (18)  | 0.0069 (15)   | 0.0204 (16)  | -0.0002 (14)  |
| C12 | 0.0473 (18)  | 0.0330 (16)  | 0.0422 (17)  | 0.0031 (14)   | 0.0049 (14)  | 0.0038 (13)   |
| C13 | 0.069 (3)    | 0.059 (2)    | 0.068 (3)    | -0.004 (2)    | 0.026 (2)    | -0.015 (2)    |
| C14 | 0.046 (2)    | 0.053 (2)    | 0.102 (3)    | 0.0028 (18)   | 0.021 (2)    | 0.006 (2)     |
| C15 | 0.066 (3)    | 0.049 (2)    | 0.162 (5)    | -0.003 (2)    | 0.061 (3)    | -0.020 (3)    |
| C16 | 0.169 (6)    | 0.119 (5)    | 0.140 (5)    | -0.065 (4)    | 0.110 (5)    | -0.085 (4)    |
| C17 | 0.235 (8)    | 0.112 (5)    | 0.068 (4)    | -0.037 (5)    | 0.028 (4)    | -0.029 (3)    |
| C18 | 0.268 (10)   | 0.119 (6)    | 0.057 (3)    | -0.041 (6)    | 0.003 (5)    | -0.014 (3)    |
| C19 | 0.138 (5)    | 0.107 (4)    | 0.060 (3)    | -0.013 (4)    | 0.042 (3)    | 0.001 (3)     |
| C20 | 0.074 (3)    | 0.077 (3)    | 0.080 (3)    | -0.019 (2)    | 0.031 (2)    | 0.010 (2)     |
|     |              |              |              |               |              |               |

| C21<br>C22<br>C23<br>C24 | 0.066 (3)<br>0.069 (3)<br>0.050 (2)<br>0.058 (2) | 0.073 (3)<br>0.043 (2)<br>0.0487 (19)<br>0.051 (2) | 0.080 (3)<br>0.075 (3)<br>0.055 (2)<br>0.069 (2) | -0.026 (2)<br>-0.0130 (19)<br>-0.0121 (16)<br>-0.0039 (18) | 0.028 (2)<br>0.008 (2)<br>0.0150 (17)<br>0.0163 (19) | 0.000 (2)<br>0.0078 (19)<br>0.0019 (16)<br>-0.0040 (18) |
|--------------------------|--------------------------------------------------|----------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|
| Geometric param          | neters (Å, °)                                    |                                                    |                                                  |                                                            |                                                      |                                                         |
| Cd1—N8                   |                                                  | 2 328 (2)                                          | C2—I                                             | 42                                                         | 0.930                                                | 0                                                       |
|                          |                                                  | 2.328(2)                                           | C2 1                                             | 43                                                         | 0.930                                                | 0                                                       |
| Cd1—N5                   |                                                  | 2.320(2)                                           | C4-(                                             | 75                                                         | 1 /00                                                |                                                         |
|                          |                                                  | 2.340(2)                                           | C4—(                                             | 14 A                                                       | 0.070                                                | (4)                                                     |
| Cd1—N5 <sup>2</sup>      |                                                  | 2.340(2)                                           | C4—I                                             | 14A                                                        | 0.970                                                | 0                                                       |
|                          |                                                  | 2.0931 (9)                                         | C4—I                                             | 14D                                                        | 0.970                                                | 0                                                       |
| Cd1—Cl1 <sup>4</sup>     |                                                  | 2.6952 (9)                                         | C5—I                                             | HJA                                                        | 0.970                                                | 0                                                       |
| Cd2—N4 <sup>11</sup>     |                                                  | 2.339 (3)                                          | C5—I                                             | H5B                                                        | 0.970                                                | 00                                                      |
| Cd2—N4                   |                                                  | 2.339 (3)                                          | C6—0                                             | 27                                                         | 1.480                                                | 0 (4)                                                   |
| Cd2—N1                   |                                                  | 2.365 (3)                                          | C6—I                                             | H6A                                                        | 0.970                                                | 00                                                      |
| Cd2—N1 <sup>II</sup>     |                                                  | 2.365 (3)                                          | C6—I                                             | H6B                                                        | 0.970                                                | 00                                                      |
| Cd2—Cl2                  |                                                  | 2.6639 (9)                                         | C7—I                                             | H7A                                                        | 0.970                                                | 00                                                      |
| Cd2—Cl2 <sup>ii</sup>    |                                                  | 2.6639 (9)                                         | C7—I                                             | H7B                                                        | 0.970                                                | 00                                                      |
| N1—C23                   |                                                  | 1.313 (4)                                          | C8—0                                             | C9                                                         | 1.493                                                | (4)                                                     |
| N1-C24                   |                                                  | 1.368 (4)                                          | C8—I                                             | H8A                                                        | 0.970                                                | 00                                                      |
| N2—C23                   |                                                  | 1.338 (4)                                          | C8—I                                             | H8B                                                        | 0.970                                                | 00                                                      |
| N2—C22                   |                                                  | 1.363 (5)                                          | C9—I                                             | H9A                                                        | 0.970                                                | 00                                                      |
| N2—C21                   |                                                  | 1.473 (4)                                          | C9—I                                             | H9B                                                        | 0.970                                                | 00                                                      |
| N3—C13                   |                                                  | 1.337 (5)                                          | C10—                                             | -H10                                                       | 0.930                                                | 0                                                       |
| N3—C15                   |                                                  | 1.357 (6)                                          | Cll—                                             | -C12                                                       | 1.355                                                | (4)                                                     |
| N3-C16                   |                                                  | 1.487 (6)                                          |                                                  | -HII                                                       | 0.930                                                | 0                                                       |
| N4—C13                   |                                                  | 1.313 (5)                                          | C12-                                             | -H12                                                       | 0.930                                                | 0                                                       |
| N4—C14                   |                                                  | 1.3/2(5)                                           | C13-                                             | -H13                                                       | 0.930                                                |                                                         |
| N5—C3                    |                                                  | 1.313 (4)                                          | C14—                                             | -C15                                                       | 1.350                                                | 0                                                       |
| $N_{3}$                  |                                                  | 1.300(4)<br>1.340(4)                               | C14—                                             | -1114<br>H15                                               | 0.930                                                | 0                                                       |
| $N_{0}$ $C_{2}$          |                                                  | 1.340 (4)                                          | C15-                                             | -017                                                       | 1 3/8                                                | (7)                                                     |
| N6-C4                    |                                                  | 1.300 (4)                                          | C16-                                             | -017<br>-H16A                                              | 0.970                                                | 0                                                       |
| N7-C10                   |                                                  | 1.335 (4)                                          | C16-                                             | -H16B                                                      | 0.970                                                | 0                                                       |
| N7—C11                   |                                                  | 1.366 (4)                                          | C17—                                             | -H17A                                                      | 0.970                                                | 0                                                       |
| N7—C9                    |                                                  | 1.464 (4)                                          | C17—                                             | -H17B                                                      | 0.970                                                | 0                                                       |
| N8—C10                   |                                                  | 1.316 (4)                                          | C18—                                             | -C19                                                       | 1.360                                                | (7)                                                     |
| N8—C12                   |                                                  | 1.370 (4)                                          | C18—                                             | -H18A                                                      | 0.970                                                | 0                                                       |
| O1—C19                   |                                                  | 1.378 (5)                                          | C18—                                             | -H18B                                                      | 0.970                                                | 00                                                      |
| O1—C20                   |                                                  | 1.379 (5)                                          | C19—                                             | -H19A                                                      | 0.970                                                | 0                                                       |
| O2—C18                   |                                                  | 1.256 (7)                                          | C19—                                             | -H19B                                                      | 0.970                                                | 0                                                       |
| O2—C17                   |                                                  | 1.273 (7)                                          | C20—                                             | -C21                                                       | 1.456                                                | 6(6)                                                    |
| O3—C7                    |                                                  | 1.411 (4)                                          | C20—                                             | -H20A                                                      | 0.970                                                | 00                                                      |
| O3—C8                    |                                                  | 1.422 (4)                                          | C20—                                             | -H20B                                                      | 0.970                                                | 00                                                      |
| O4—C5                    |                                                  | 1.407 (4)                                          | C21—                                             | -H21A                                                      | 0.970                                                | 00                                                      |
| O4—C6                    |                                                  | 1.420 (4)                                          | C21—                                             | -H21B                                                      | 0.970                                                | 00                                                      |
| O1W—H1WA                 |                                                  | 0.88 (6)                                           | C22—                                             | -C24                                                       | 1.348                                                | 5 (5)                                                   |

| O1W—H1WB                                | 0.85 (2)    | C22—H22      | 0.9300    |
|-----------------------------------------|-------------|--------------|-----------|
| C1—C2                                   | 1.351 (4)   | С23—Н23      | 0.9300    |
| C1—H1                                   | 0.9300      | C24—H24      | 0.9300    |
| N8—Cd1—N8 <sup>i</sup>                  | 180.00 (9)  | С7—С6—Н6В    | 110.0     |
| N8—Cd1—N5                               | 88.32 (8)   | Н6А—С6—Н6В   | 108.3     |
| N8 <sup>i</sup> —Cd1—N5                 | 91.68 (8)   | O3—C7—C6     | 110.9 (3) |
| N8—Cd1—N5 <sup>i</sup>                  | 91.68 (8)   | O3—C7—H7A    | 109.5     |
| N8 <sup>i</sup> —Cd1—N5 <sup>i</sup>    | 88.32 (8)   | С6—С7—Н7А    | 109.5     |
| N5—Cd1—N5 <sup>i</sup>                  | 180.0       | O3—C7—H7B    | 109.5     |
| N8—Cd1—Cl1                              | 88.85 (7)   | С6—С7—Н7В    | 109.5     |
| N8 <sup>i</sup> —Cd1—Cl1                | 91.15 (7)   | Н7А—С7—Н7В   | 108.0     |
| N5—Cd1—Cl1                              | 89.63 (7)   | O3—C8—C9     | 109.0 (3) |
| N5 <sup>i</sup> —Cd1—Cl1                | 90.37 (7)   | O3—C8—H8A    | 109.9     |
| N8—Cd1—Cl1 <sup>i</sup>                 | 91.15 (7)   | С9—С8—Н8А    | 109.9     |
| N8 <sup>i</sup> —Cd1—Cl1 <sup>i</sup>   | 88.85 (7)   | O3—C8—H8B    | 109.9     |
| N5—Cd1—Cl1 <sup>i</sup>                 | 90.37 (7)   | С9—С8—Н8В    | 109.9     |
| N5 <sup>i</sup> —Cd1—Cl1 <sup>i</sup>   | 89.63 (7)   | H8A—C8—H8B   | 108.3     |
| Cl1—Cd1—Cl1 <sup>i</sup>                | 180.0       | N7—C9—C8     | 112.9 (2) |
| N4 <sup>ii</sup> —Cd2—N4                | 179.999 (1) | N7—C9—H9A    | 109.0     |
| N4 <sup>ii</sup> —Cd2—N1                | 89.01 (10)  | С8—С9—Н9А    | 109.0     |
| N4—Cd2—N1                               | 90.99 (10)  | N7—C9—H9B    | 109.0     |
| N4 <sup>ii</sup> —Cd2—N1 <sup>ii</sup>  | 90.99 (10)  | С8—С9—Н9В    | 109.0     |
| N4—Cd2—N1 <sup>ii</sup>                 | 89.01 (10)  | Н9А—С9—Н9В   | 107.8     |
| N1—Cd2—N1 <sup>ii</sup>                 | 180.0       | N8—C10—N7    | 111.9 (3) |
| N4 <sup>ii</sup> —Cd2—Cl2               | 91.17 (8)   | N8—C10—H10   | 124.1     |
| N4—Cd2—Cl2                              | 88.84 (8)   | N7—C10—H10   | 124.1     |
| N1—Cd2—Cl2                              | 90.36 (7)   | C12—C11—N7   | 106.2 (3) |
| N1 <sup>ii</sup> —Cd2—Cl2               | 89.65 (7)   | C12—C11—H11  | 126.9     |
| N4 <sup>ii</sup> —Cd2—Cl2 <sup>ii</sup> | 88.83 (8)   | N7—C11—H11   | 126.9     |
| N4—Cd2—Cl2 <sup>ii</sup>                | 91.17 (8)   | C11—C12—N8   | 109.7 (3) |
| N1—Cd2—Cl2 <sup>ii</sup>                | 89.64 (7)   | C11—C12—H12  | 125.2     |
| N1 <sup>ii</sup> —Cd2—Cl2 <sup>ii</sup> | 90.35 (7)   | N8—C12—H12   | 125.2     |
| Cl2—Cd2—Cl2 <sup>ii</sup>               | 179.999 (1) | N4—C13—N3    | 112.0 (4) |
| C23—N1—C24                              | 105.0 (3)   | N4—C13—H13   | 124.0     |
| C23—N1—Cd2                              | 123.3 (2)   | N3—C13—H13   | 124.0     |
| C24—N1—Cd2                              | 131.4 (2)   | C15-C14-N4   | 108.9 (4) |
| C23—N2—C22                              | 105.9 (3)   | C15—C14—H14  | 125.5     |
| C23—N2—C21                              | 125.1 (3)   | N4—C14—H14   | 125.5     |
| C22—N2—C21                              | 128.9 (3)   | C14—C15—N3   | 107.2 (4) |
| C13—N3—C15                              | 106.5 (4)   | C14—C15—H15  | 126.4     |
| C13—N3—C16                              | 125.2 (5)   | N3—C15—H15   | 126.4     |
| C15—N3—C16                              | 128.3 (5)   | C17—C16—N3   | 117.2 (5) |
| C13—N4—C14                              | 105.4 (3)   | C17—C16—H16A | 108.0     |
| C13—N4—Cd2                              | 126.7 (3)   | N3—C16—H16A  | 108.0     |

| C14—N4—Cd2                    | 127.9 (3) | C17—C16—H16B  | 108.0      |
|-------------------------------|-----------|---------------|------------|
| C3—N5—C1                      | 105.0 (3) | N3—C16—H16B   | 108.0      |
| C3—N5—Cd1                     | 124.8 (2) | H16A—C16—H16B | 107.3      |
| C1—N5—Cd1                     | 130.2 (2) | O2—C17—C16    | 121.9 (6)  |
| C3—N6—C2                      | 107.1 (3) | O2—C17—H17A   | 106.9      |
| C3—N6—C4                      | 126.5 (3) | C16—C17—H17A  | 106.9      |
| C2—N6—C4                      | 126.2 (3) | O2—C17—H17B   | 106.9      |
| C10—N7—C11                    | 107.0 (2) | C16—C17—H17B  | 106.9      |
| C10—N7—C9                     | 125.8 (3) | H17A—C17—H17B | 106.7      |
| C11—N7—C9                     | 127.2 (3) | O2—C18—C19    | 126.4 (5)  |
| C10—N8—C12                    | 105.2 (2) | O2—C18—H18A   | 105.7      |
| C10—N8—Cd1                    | 124.6 (2) | C19—C18—H18A  | 105.7      |
| C12—N8—Cd1                    | 130.2 (2) | O2—C18—H18B   | 105.7      |
| C19—O1—C20                    | 116.7 (3) | C19—C18—H18B  | 105.7      |
| C18—O2—C17                    | 130.9 (5) | H18A—C18—H18B | 106.2      |
| C7—O3—C8                      | 110.7 (2) | C18—C19—O1    | 116.6 (5)  |
| C5—O4—C6                      | 112.2 (2) | C18—C19—H19A  | 108.1      |
| H1WA—O1W—H1WB                 | 102 (6)   | O1—C19—H19A   | 108.1      |
| C2-C1-N5                      | 110.1 (3) | C18—C19—H19B  | 108.1      |
| С2—С1—Н1                      | 124.9     | O1—C19—H19B   | 108.1      |
| N5-C1-H1                      | 124.9     | H19A—C19—H19B | 107.3      |
| C1—C2—N6                      | 106.0 (3) | O1—C20—C21    | 111.4 (3)  |
| C1—C2—H2                      | 127.0     | O1—C20—H20A   | 109.3      |
| N6—C2—H2                      | 127.0     | C21—C20—H20A  | 109.3      |
| N5—C3—N6                      | 111.7 (3) | O1—C20—H20B   | 109.3      |
| N5—C3—H3                      | 124.1     | C21—C20—H20B  | 109.3      |
| N6—C3—H3                      | 124.1     | H20A—C20—H20B | 108.0      |
| N6—C4—C5                      | 111.5 (3) | C20—C21—N2    | 112.7 (3)  |
| N6—C4—H4A                     | 109.3     | C20—C21—H21A  | 109.1      |
| C5—C4—H4A                     | 109.3     | N2—C21—H21A   | 109.1      |
| N6—C4—H4B                     | 109.3     | C20—C21—H21B  | 109.1      |
| C5—C4—H4B                     | 109.3     | N2—C21—H21B   | 109.1      |
| H4A—C4—H4B                    | 108.0     | H21A—C21—H21B | 107.8      |
| O4—C5—C4                      | 108.1 (2) | C24—C22—N2    | 107.1 (3)  |
| O4—C5—H5A                     | 110.1     | С24—С22—Н22   | 126.4      |
| С4—С5—Н5А                     | 110.1     | N2—C22—H22    | 126.4      |
| O4—C5—H5B                     | 110.1     | N1—C23—N2     | 112.5 (3)  |
| С4—С5—Н5В                     | 110.1     | N1—C23—H23    | 123.7      |
| H5A—C5—H5B                    | 108.4     | N2—C23—H23    | 123.7      |
| O4—C6—C7                      | 108.7 (3) | C22—C24—N1    | 109.4 (3)  |
| O4—C6—H6A                     | 110.0     | C22—C24—H24   | 125.3      |
| С7—С6—Н6А                     | 110.0     | N1—C24—H24    | 125.3      |
| O4—C6—H6B                     | 110.0     |               |            |
| N4 <sup>ii</sup> —Cd2—N1—C23  | 173.1 (3) | C5—O4—C6—C7   | 169.1 (3)  |
| N4—Cd2—N1—C23                 | -6.9 (3)  | C8—O3—C7—C6   | -173.5 (3) |
| Cl2—Cd2—N1—C23                | -95.8 (3) | O4—C6—C7—O3   | 64.0 (3)   |
| Cl2 <sup>ii</sup> —Cd2—N1—C23 | 84.2 (3)  | C7—O3—C8—C9   | 175.8 (3)  |
| N4 <sup>ii</sup> —Cd2—N1—C24  | 1.1 (3)   | C10—N7—C9—C8  | 100.1 (4)  |
|                               |           |               |            |

| N4—Cd2—N1—C24                                                              | -178.9 (3)  | C11—N7—C9—C8   | -78.3 (4)   |  |  |  |
|----------------------------------------------------------------------------|-------------|----------------|-------------|--|--|--|
| Cl2—Cd2—N1—C24                                                             | 92.3 (3)    | O3—C8—C9—N7    | -62.2 (4)   |  |  |  |
| Cl2 <sup>ii</sup> —Cd2—N1—C24                                              | -87.7 (3)   | C12—N8—C10—N7  | 0.5 (3)     |  |  |  |
| N1—Cd2—N4—C13                                                              | -70.7 (3)   | Cd1—N8—C10—N7  | 179.79 (18) |  |  |  |
| N1 <sup>ii</sup> —Cd2—N4—C13                                               | 109.3 (3)   | C11—N7—C10—N8  | -0.6 (3)    |  |  |  |
| Cl2—Cd2—N4—C13                                                             | 19.7 (3)    | C9—N7—C10—N8   | -179.3 (3)  |  |  |  |
| Cl2 <sup>ii</sup> —Cd2—N4—C13                                              | -160.3 (3)  | C10-N7-C11-C12 | 0.4 (3)     |  |  |  |
| N1—Cd2—N4—C14                                                              | 111.2 (3)   | C9—N7—C11—C12  | 179.1 (3)   |  |  |  |
| N1 <sup>ii</sup> —Cd2—N4—C14                                               | -68.8 (3)   | N7-C11-C12-N8  | -0.1 (3)    |  |  |  |
| Cl2—Cd2—N4—C14                                                             | -158.5 (3)  | C10-N8-C12-C11 | -0.2 (3)    |  |  |  |
| Cl2 <sup>ii</sup> —Cd2—N4—C14                                              | 21.5 (3)    | Cd1—N8—C12—C11 | -179.4 (2)  |  |  |  |
| N8—Cd1—N5—C3                                                               | -40.5 (3)   | C14—N4—C13—N3  | -0.2 (4)    |  |  |  |
| N8 <sup>i</sup> —Cd1—N5—C3                                                 | 139.5 (3)   | Cd2—N4—C13—N3  | -178.7 (2)  |  |  |  |
| Cl1—Cd1—N5—C3                                                              | 48.4 (2)    | C15—N3—C13—N4  | -0.1 (5)    |  |  |  |
| Cl1 <sup>i</sup> —Cd1—N5—C3                                                | -131.6 (2)  | C16—N3—C13—N4  | -178.9 (4)  |  |  |  |
| N8—Cd1—N5—C1                                                               | 137.2 (3)   | C13—N4—C14—C15 | 0.4 (4)     |  |  |  |
| N8 <sup>i</sup> —Cd1—N5—C1                                                 | -42.8 (3)   | Cd2—N4—C14—C15 | 178.8 (2)   |  |  |  |
| Cl1—Cd1—N5—C1                                                              | -133.9 (3)  | N4—C14—C15—N3  | -0.4 (5)    |  |  |  |
| Cl1 <sup>i</sup> —Cd1—N5—C1                                                | 46.1 (3)    | C13—N3—C15—C14 | 0.3 (5)     |  |  |  |
| N5-Cd1-N8-C10                                                              | -68.9 (2)   | C16—N3—C15—C14 | 179.1 (4)   |  |  |  |
| N5 <sup>i</sup> —Cd1—N8—C10                                                | 111.1 (2)   | C13—N3—C16—C17 | 79.4 (8)    |  |  |  |
| Cl1—Cd1—N8—C10                                                             | -158.6 (2)  | C15—N3—C16—C17 | -99.2 (8)   |  |  |  |
| Cl1 <sup>i</sup> —Cd1—N8—C10                                               | 21.4 (2)    | C18—O2—C17—C16 | -147.6 (9)  |  |  |  |
| N5-Cd1-N8-C12                                                              | 110.1 (2)   | N3—C16—C17—O2  | -38.2 (12)  |  |  |  |
| N5 <sup>i</sup> —Cd1—N8—C12                                                | -69.9 (2)   | C17—O2—C18—C19 | -159.6 (9)  |  |  |  |
| Cl1—Cd1—N8—C12                                                             | 20.5 (2)    | O2—C18—C19—O1  | -18.3 (14)  |  |  |  |
| $Cl1^{i}$ —Cd1—N8—C12                                                      | -159.5 (2)  | C20—O1—C19—C18 | 168.1 (6)   |  |  |  |
| C3—N5—C1—C2                                                                | 0.2 (4)     | C19—O1—C20—C21 | -158.1 (4)  |  |  |  |
| Cd1—N5—C1—C2                                                               | -177.9 (2)  | O1—C20—C21—N2  | -55.9 (5)   |  |  |  |
| N5-C1-C2-N6                                                                | -0.6 (4)    | C23—N2—C21—C20 | 76.6 (5)    |  |  |  |
| C3—N6—C2—C1                                                                | 0.8 (4)     | C22—N2—C21—C20 | -108.3 (5)  |  |  |  |
| C4—N6—C2—C1                                                                | 176.5 (3)   | C23—N2—C22—C24 | 1.0 (4)     |  |  |  |
| C1—N5—C3—N6                                                                | 0.4 (3)     | C21—N2—C22—C24 | -174.8 (4)  |  |  |  |
| Cd1—N5—C3—N6                                                               | 178.53 (18) | C24—N1—C23—N2  | 1.0 (4)     |  |  |  |
| C2—N6—C3—N5                                                                | -0.8 (3)    | Cd2—N1—C23—N2  | -172.7 (2)  |  |  |  |
| C4—N6—C3—N5                                                                | -176.5 (3)  | C22—N2—C23—N1  | -1.3 (4)    |  |  |  |
| C3—N6—C4—C5                                                                | 99.4 (4)    | C21—N2—C23—N1  | 174.7 (3)   |  |  |  |
| C2—N6—C4—C5                                                                | -75.5 (4)   | N2-C22-C24-N1  | -0.4 (4)    |  |  |  |
| C6—O4—C5—C4                                                                | 177.2 (3)   | C23—N1—C24—C22 | -0.3 (4)    |  |  |  |
| N6-C4-C5-O4                                                                | -66.5 (3)   | Cd2—N1—C24—C22 | 172.7 (2)   |  |  |  |
| Symmetry codes: (i) $-x+1$ , $-y$ , $-z+1$ ; (ii) $-x$ , $-y+1$ , $-z+1$ . |             |                |             |  |  |  |

### Hydrogen-bond geometry (Å, °)

| D—H···A                     | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | $D -\!\!\!-\!\!\!- \mathbf{H} \cdots \!\!\!- A$ |
|-----------------------------|-------------|--------------|--------------|-------------------------------------------------|
| O1W—H1WB…Cl2 <sup>iii</sup> | 0.85 (2)    | 2.33 (3)     | 3.165 (3)    | 164 (5)                                         |

| O1W—H1WA…Cl1 <sup>iv</sup>                                        | 0.88 (6) | 2.42 (5) | 3.198 (4) | 147 (7) |
|-------------------------------------------------------------------|----------|----------|-----------|---------|
| Symmetry codes: (iii) $x+1$ , $y$ , $z$ ; (iv) $-x+1$ , $y+1/2$ , | -z+1/2.  |          |           |         |

### Fig. 1





Fig. 2